Time delay consideration on a new active control algorithm

Arcan Yanik, Unal Aldemir, Mehmet Bakioglu

Research output: Contribution to conferencePaperpeer-review

1 Citation (Scopus)

Abstract

In the area of active control of structures, time delay consideration is an important parameter which must be taken into consideration for realistic numerical models. In this research, the performance of a new active control algorithm for several time delays under two different earthquake excitations was investigated numerically. The proposed performance index does not require a priori knowledge of seismic input and the solution of the nonlinear matrix Riccati equation to apply the control forces [1,2]. The proposed control introduces the seismic energy term into the performance index so that the mechanical energy of the structure, the control and the seismic energies are considered simultaneously in the minimization procedure, which yields cross terms in the performance index. A two story shear frame was modelled in Matlab-Simulink considering time-delay. A fully active tendon controller system is implemented to the system. 0-50 ms time delay was considered in the dynamic analysis. The change in the time delay steps was 5 ms. The effect of time-delay was investigated under synthetic and Erzincan NS (1995;95 Erzincan station) earthquakes. Kanai-Tajimi power spectral density function was used to generate synthetic earthquake motion. The behavior of the proposed control with time delay considerations is compared with the uncontrolled conventional structure.

Original languageEnglish
DOIs
Publication statusPublished - 2015
EventASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015 - Boston, United States
Duration: 2 Aug 20155 Aug 2015

Conference

ConferenceASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Country/TerritoryUnited States
CityBoston
Period2/08/155/08/15

Bibliographical note

Publisher Copyright:
Copyright © 2015 by ASME.

Fingerprint

Dive into the research topics of 'Time delay consideration on a new active control algorithm'. Together they form a unique fingerprint.

Cite this