Abstract
Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed1-3. Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies 4-6. In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars.
Original language | English |
---|---|
Pages (from-to) | 648-653 |
Number of pages | 6 |
Journal | Nature Materials |
Volume | 8 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2009 |
Externally published | Yes |
Funding
We acknowledge G. F. Brown and J. Wu for help with simulations. This work was financially supported by Berkeley Sensor and Actuator Center. J. C. H. acknowledges an Intel Graduate Fellowship. All fabrication was carried out in the Berkeley Microfabrication Laboratory. The solar-cell experimental characterization was done at LBNL, and was supported by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC02-05CH11231 |
Intel Corporation | |
Office of Science | |
Basic Energy Sciences |