Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites

Israfil Kucuk*, Tahsin Boyraz, Hasan Gökçe, Mustafa Lütfi Öveçoğlu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramics were prepared by the powder metallurgy route including sintering the Al2TiO5-reinforced Mg2SiO4 green compacts at 1600 °C. Sivas talc (3MgO.4SiO2·H2O) was used as a precursor for the Mg2SiO4 ceramics due to its excellent mechanical properties like thermal shock and abrasion resistance. In order to investigate thermal shock resistance behaviour, the as-prepared samples were quenched in water and assessed. Investigations were carried out to study the effect of Al2TiO5 addition on microstructural, physical, thermal and mechanical properties of Al2TiO5-reinforced Mg2SiO4 ceramic composites. The thermal and mechanical properties were examined before and after thermal shock tests. The results showed that the best thermal expansion coefficient (0.76 × 10−6 (K−1)) and thermal shock resistance (6.82 GPa) of the Al2TiO5-reinforced forsterite (Mg2SiO4) ceramic composites were obtained after thermal shock test, which were better than those of the other concentrations of the Al2TiO5-reinforced forsterite (Mg2SiO4) ceramic composites. These findings suggest that 20 wt% Al2TiO5-reinforced forsterite (Mg2SiO4) ceramic composites possess good thermomechanical properties and thus might be suitable for potential applications such as filter material, pharmaceuticals, cosmetic manufacturing, optical, and chemical devices.

Original languageEnglish
Pages (from-to)8277-8282
Number of pages6
JournalCeramics International
Volume44
Issue number7
DOIs
Publication statusPublished - May 2018

Bibliographical note

Publisher Copyright:
© 2018 Elsevier Ltd and Techna Group S.r.l.

Keywords

  • AlTiO
  • MgSiO
  • Powder metallurgy
  • Thermal shock test
  • Thermomechanical properties

Fingerprint

Dive into the research topics of 'Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites'. Together they form a unique fingerprint.

Cite this