The use of spectral and textural features in crop type mapping using sentinel-2a images: A case study, çukurova region, Turkey

A. Tuzcu Kokal*, A. F. Sunar, A. Dervisoglu, S. Berberoglu

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

Turkey has favorable agricultural conditions (i.e. fertile soils, climate and rainfall) and can grow almost any type of crop in many regions, making it one of the leading sectors of the economy. For sustainable agriculture management, all factors affecting the agricultural products should be analyzed on a spatialoral basis. Therefore, nowadays space technologies such as remote sensing are important tools in providing an accurate mapping of the agricultural fields with timely monitoring and higher repetition frequency and accuracy. In this study, object based classification method was applied to 2017 Sentinel 2 Level 2A satellite image in order to map crop types in the Adana, Çukurova region in Turkey. Support Vector Machine (SVM) was used as a classifier. Texture information were incorporated to spectral wavebands of Sentinel-2 image, to increase the classification accuracy. In this context, all of the textural features of Gray-Level Co-occurrence Matrix (GLCM) were tested and Entropy, Standard deviation, and Mean textural features were found to be the most suitable among them. Multi-spectral and textural features were used as an input separately and/or in combination to evaluate the potential of texture in differentiating crop types and the accuracy of output thematic maps. As a result, with the addition of textural features, it was observed that the Overall Accuracy and Kappa coefficient increased by 7% and 8%, respectively.

Original languageEnglish
Pages (from-to)117-122
Number of pages6
JournalInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Volume43
Issue numberB3-2021
DOIs
Publication statusPublished - 28 Jun 2021
Externally publishedYes
Event2021 24th ISPRS Congress Commission III: Imaging Today, Foreseeing Tomorrow - Nice, France
Duration: 5 Jul 20219 Jul 2021

Bibliographical note

Publisher Copyright:
© 2021 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. All rights reserved.

Keywords

  • Crop mapping
  • GLCM
  • Object-based classification
  • Sentinel-2A
  • Spectral and textural analysis

Fingerprint

Dive into the research topics of 'The use of spectral and textural features in crop type mapping using sentinel-2a images: A case study, çukurova region, Turkey'. Together they form a unique fingerprint.

Cite this