The study of strength behaviour of zeolite in cemented paste backfill

Hasan Eker*, Atac Bascetin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25°C and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement – 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement – 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.

Original languageEnglish
Pages (from-to)421-434
Number of pages14
JournalGeomechanics and Engineering
Volume29
Issue number4
DOIs
Publication statusPublished - 25 May 2022

Bibliographical note

Publisher Copyright:
© 2022 Techno-Press, Ltd.

Keywords

  • cement
  • cemented paste backfill (CPB)
  • tailings
  • uniaxial compressive strength (UCS)
  • zeolite

Fingerprint

Dive into the research topics of 'The study of strength behaviour of zeolite in cemented paste backfill'. Together they form a unique fingerprint.

Cite this