Abstract
The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation in Erzincanli and Sahin (2013) has been employed in order to investigate the effects of the wing kinematics on the near wake topology produced by a pair of flapping Drosophila wings in hover flight. The three-dimensional wing shape and the baseline wing kinematics are the same as those of the robotic fly by Dickinson et al. (1999). The simulations are used to quantify the important wing kinematic parameters for the wake topology and as well as their correlations with the force production. The angle-of-attack is shown to be very effective for producing lift during the wing translational motion. However, for larger values the angle-of-attack limits the angle during the stroke reversal and reduces the rotational lift. The angle-of-attack at which the maximum lift coefficient occurs is in excellent agreement with the earlier experiments in the literature. In addition, the numerical results confirm that the increase in the wing stroke amplitude leads to a prolonged attachment of the leading edge vortex (LEV) over a relatively large distance and increases force production. The variations in the heave angle include the figure-of-eight pattern, figure-of-O pattern and figure-of-U pattern. The constant heave angle and figure-of-eight pattern are found to have a more profound influence on the magnitude of force production. In addition, some asymmetric variations in the wing kinematics are introduced in order to assess the important parameters determining forward and backward flights. The paddling wing motion is shown to be very effective to initiate forward and backward acceleration.
Original language | English |
---|---|
Pages (from-to) | 90-110 |
Number of pages | 21 |
Journal | Computers and Fluids |
Volume | 122 |
DOIs | |
Publication status | Published - 20 Nov 2015 |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Ltd.
Funding
The authors acknowledge financial support from Turkish National Scientific and Technical Research Council (TUBITAK) through project number 111M332. The authors would like to thank Michael Dickinson and his graduate student Michael Elzinga for providing the experimental data. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing of Turkey (UYBHM) under grant number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.
Funders | Funder number |
---|---|
National Center for High Performance Computing of Turkey | |
TUBITAK | 111M332 |
UYBHM | 10752009 |
Consejo Nacional de Investigaciones Científicas y Técnicas |
Keywords
- ALE methods
- Insect flight
- Large-scale computations
- Near wake structure
- Unstructured finite volume
- Wing kinematics