The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze*, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc André Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nicolas Cordier, Jason J. CorsoAntonio Criminisi, Tilak Das, Hervé Delingette, Çağatay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo, Andac Hamamci, Khan M. Iftekharuddin, Raj Jena, Nigel M. John, Ender Konukoglu, Danial Lashkari, José António Mariz, Raphael Meier, Sérgio Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M.S. Reza, Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo Chang Shin, Jamie Shotton, Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely, Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic, Marcel Prastawa, Mauricio Reyes, Koen Van Leemput

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4936 Citations (Scopus)

Abstract

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

Original languageEnglish
Article number2377694
Pages (from-to)1993-2024
Number of pages32
JournalIEEE Transactions on Medical Imaging
Volume34
Issue number10
DOIs
Publication statusPublished - 1 Oct 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Funding

This research was supported by the NIH NCRR (P41-RR14075), the NIH NIBIB (R01EB013565), the Academy of Finland (133611), TEKES (ComBrain), the Lundbeck Foundation (R141-2013-13117), the Swiss Cancer League, the Swiss Institute for Computer Assisted Surgery (SICAS), the NIH NIBIB NAMIC (U54-EB005149), the NIH NCRR NAC (P41-RR13218), the NIH NIBIB NAC (P41-EB-015902), the NIH NCI (R15CA115464), the European Research Council through the ERC Advanced Grant MedYMA 2011-291080 (on Biophysical Modeling and Analysis of Dynamic Medical Images), the FCT and COMPETE (FCOM-01-0124-FEDER-022674), the MICAT Project (EU FP7 Marie Curie Grant No. PIRG-GA-2008-231052), the European Union Seventh Framework Programme under grant agreement no. 600841, the Swiss NSF project Computer Aided and Image Guided Medical Interventions (NCCR CO-ME), the Technische Universität München—Institute for Advanced Study (funded by the German Excellence Initiative and the European Union Seventh Framework Programme under Grant agreement 291763), the Marie Curie COFUND program of the European Union (Rudolf Mössbauer Tenure-Track Professorship to BHM).

FundersFunder number
FP7 Marie CuriePIRG-GA-2008-231052
German Excellence Initiative291763
NIH NCIR15CA115464
NIH NCRRP41-RR14075
NIH NCRR NACP41-RR13218
NIH NIBIB NACP41-EB-015902
NIH NIBIB NAMICU54-EB005149
Swiss Institute for Computer Assisted Surgery
National Institute of Biomedical Imaging and BioengineeringR01EB013565
National Center for Research ResourcesP41RR013218
European Commission
European Research CouncilMedYMA 2011-291080
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Fundação para a Ciência e a Tecnologia
Academy of Finland133611
Tekes
LundbeckfondenR141-2013-13117
Krebsliga Schweiz
Seventh Framework Programme600841
Programa Operacional Temático Factores de CompetitividadeFCOM-01-0124-FEDER-022674
Institute for Advanced Study, Technische Universität München

    Keywords

    • Benchmark
    • Brain
    • Image segmentation
    • MRI
    • Oncology/tumor

    Fingerprint

    Dive into the research topics of 'The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)'. Together they form a unique fingerprint.

    Cite this