TY - JOUR
T1 - The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods
AU - Kılıç, Abdulhalim
AU - Fazeli Jadidi, M.
AU - Özer, Hakan Özgür
AU - Kök, Fatma Neşe
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Most of the model lipid membrane studies on gold involve the usage of various surface-modification strategies to rupture liposomes and induce lipid bilayer formation since liposomes with polar surfaces do not interact with bare, hydrophobic gold. In this study, a thiol-modified phospholipid, 1,2-Dipalmitoyl-sn-Glycero-3-Phosphothioethanol (DPPTE) was incorporated into phosphatidylcholine (PC) based liposomes to form supported lipid bilayer (SLB) on gold surfaces without further modification. The binding kinetics of liposomes with different DPPTE ratio (0.01 to 100% mol/mol) and diameters were monitored by Quartz Crystal Microbalance with Dissipation (QCM-D). The dissipation change per frequency change, i.e. acoustic ratio, which is evaluated as a degree of the viscoelasticity, considerably decreased with the presence of DPPTE (from 162.3 GHz−1 for flattened PC liposomes to ca. 89.5 GHz−1 for 100% DPPTE liposomes) when compared to the results of two reference rigid monolayers and two viscoelastic layers. To assess the quality of SLB platform, the interpretation of QCM-D data was also complemented with Surface Plasmon Resonance. The optimum thiolated-lipid ratio (1%, lower thiol ratio and higher rigidity) was then used to determine the dry-lipid mass deposition, the water content and the thickness values of the SLB via viscoelastic modelling. Further surface characterization studies were performed by Atomic Force Microscopy with high spatial resolution. The results suggested that model membrane was almost continuous with minimum defects but showed more dissipative/soft nature compared to an ideal bilayer due to partially fused liposomes/overlapped lipid bilayers/multilayer islands. These local elevations distorted the planarity and led the increase of overall membrane thickness to ∼7.0 nm.
AB - Most of the model lipid membrane studies on gold involve the usage of various surface-modification strategies to rupture liposomes and induce lipid bilayer formation since liposomes with polar surfaces do not interact with bare, hydrophobic gold. In this study, a thiol-modified phospholipid, 1,2-Dipalmitoyl-sn-Glycero-3-Phosphothioethanol (DPPTE) was incorporated into phosphatidylcholine (PC) based liposomes to form supported lipid bilayer (SLB) on gold surfaces without further modification. The binding kinetics of liposomes with different DPPTE ratio (0.01 to 100% mol/mol) and diameters were monitored by Quartz Crystal Microbalance with Dissipation (QCM-D). The dissipation change per frequency change, i.e. acoustic ratio, which is evaluated as a degree of the viscoelasticity, considerably decreased with the presence of DPPTE (from 162.3 GHz−1 for flattened PC liposomes to ca. 89.5 GHz−1 for 100% DPPTE liposomes) when compared to the results of two reference rigid monolayers and two viscoelastic layers. To assess the quality of SLB platform, the interpretation of QCM-D data was also complemented with Surface Plasmon Resonance. The optimum thiolated-lipid ratio (1%, lower thiol ratio and higher rigidity) was then used to determine the dry-lipid mass deposition, the water content and the thickness values of the SLB via viscoelastic modelling. Further surface characterization studies were performed by Atomic Force Microscopy with high spatial resolution. The results suggested that model membrane was almost continuous with minimum defects but showed more dissipative/soft nature compared to an ideal bilayer due to partially fused liposomes/overlapped lipid bilayers/multilayer islands. These local elevations distorted the planarity and led the increase of overall membrane thickness to ∼7.0 nm.
KW - Quartz CrystalMicrobalance
KW - Supported lipid bilayer
KW - Surface Plasmon Resonance
KW - thiol-terminated phospholipids
UR - http://www.scopus.com/inward/record.url?scp=85029355156&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfb.2017.09.016
DO - 10.1016/j.colsurfb.2017.09.016
M3 - Article
C2 - 28918188
AN - SCOPUS:85029355156
SN - 0927-7765
VL - 160
SP - 117
EP - 125
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
ER -