TY - JOUR
T1 - The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver
AU - Ucar, Nuray
AU - Demirsoy, Nesrin
AU - Onen, Aysen
AU - Karacan, Ismail
AU - Kizildag, Nuray
AU - Eren, Olcay
AU - Faruk Vurur, O.
AU - Sezer, Esma
AU - Ustamehmetoglu, Belkis
N1 - Publisher Copyright:
© 2014, Springer Science+Business Media New York.
PY - 2015/2
Y1 - 2015/2
N2 - There are many studies which use different types of reduction methods that affect the final properties of composite material containing silver nitrate (AgNO3). The use of poly(N-vinylpyrrolidone) (PVP) in the composite also affects the final properties of composite material. However, as seen from the literature, it is difficult to find any studies focusing on polymer composite nanofibers reduced using different reduction methods and studies with different PVP loadings which are compared to each other, although it is very important to determine the most suitable reduction method and PVP loading for final composite properties. Thus, in this work, the effect of different reduction methods on polyacrylonitrile (PAN) composite nanofibers incorporating AgNO3 and the comparison of different amounts of stabilizer (PVP) are studied in detail to determine the most suitable reduction method and the effect of PVP loading on the structure and the properties of the final product. PAN composite nanofibers having different amounts of PVP are reduced by four different methods namely arc-sol method, hydrazine method, arc-web method, and reflux method and characterized by electrical conductivity, mechanical testing, and thermal and SEM analyses. It has been observed that the hydrazine method provides higher breaking strength, electrical conductivity, enthalpy, smallest diameter, and lower cyclization temperature (Tc) than other reduction methods. Presence of PVP results in an increase of breaking strength and cyclization temperature, a decrease of enthalpy and the electrical conductivity. While highest breaking strength was obtained by hydrazine reduction with highest PVP loading, highest electrical conductivity was obtained by hydrazine reduction without PVP. As a direct result of the incorporation of AgNO3 with or without PVP, insulator pure PAN (10−12 S/cm) becomes semi-conductive material (10−7 S/cm), which can be used as an antistatic material.
AB - There are many studies which use different types of reduction methods that affect the final properties of composite material containing silver nitrate (AgNO3). The use of poly(N-vinylpyrrolidone) (PVP) in the composite also affects the final properties of composite material. However, as seen from the literature, it is difficult to find any studies focusing on polymer composite nanofibers reduced using different reduction methods and studies with different PVP loadings which are compared to each other, although it is very important to determine the most suitable reduction method and PVP loading for final composite properties. Thus, in this work, the effect of different reduction methods on polyacrylonitrile (PAN) composite nanofibers incorporating AgNO3 and the comparison of different amounts of stabilizer (PVP) are studied in detail to determine the most suitable reduction method and the effect of PVP loading on the structure and the properties of the final product. PAN composite nanofibers having different amounts of PVP are reduced by four different methods namely arc-sol method, hydrazine method, arc-web method, and reflux method and characterized by electrical conductivity, mechanical testing, and thermal and SEM analyses. It has been observed that the hydrazine method provides higher breaking strength, electrical conductivity, enthalpy, smallest diameter, and lower cyclization temperature (Tc) than other reduction methods. Presence of PVP results in an increase of breaking strength and cyclization temperature, a decrease of enthalpy and the electrical conductivity. While highest breaking strength was obtained by hydrazine reduction with highest PVP loading, highest electrical conductivity was obtained by hydrazine reduction without PVP. As a direct result of the incorporation of AgNO3 with or without PVP, insulator pure PAN (10−12 S/cm) becomes semi-conductive material (10−7 S/cm), which can be used as an antistatic material.
UR - http://www.scopus.com/inward/record.url?scp=84925514123&partnerID=8YFLogxK
U2 - 10.1007/s10853-014-8748-4
DO - 10.1007/s10853-014-8748-4
M3 - Article
AN - SCOPUS:84925514123
SN - 0022-2461
VL - 50
SP - 1855
EP - 1864
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 4
ER -