Target aware visual object tracking

Caner Ozer*, Filiz Gurkan, Bilge Gunsel

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

We propose a visual object tracker that improves accuracy while significantly decreasing false alarm rate. This is achieved by a late fusion scheme that integrates the motion model of particle sampling with the region proposal network of Mask R-CNN during inference. The qualified bounding boxes selected by the late fusion are fed into the Mask R-CNN’s head layer for the detection of the tracked object. We refer the introduced scheme, TAVOT, as target aware visual object tracker since it is capable of minimizing false detections with the guidance of variable rate particle sampling initialized by the target region of interest. It is shown that TAVOT is capable of modeling temporal video content with a simple motion model thus constitutes a promising video object tracker. Performance evaluation performed on VOT2016 video sequences demonstrates that TAVOT 22% increases the success rate, while 73% decreasing the false alarm rate compared to the baseline Mask R-CNN. Compared to the top tracker of VOT2016 around 5% increase at the success rate is reported where intersection over union is greater than 0.5.

Original languageEnglish
Title of host publicationImage Analysis and Recognition - 16th International Conference, ICIAR 2019, Proceedings
EditorsFakhri Karray, Alfred Yu, Aurélio Campilho
PublisherSpringer Verlag
Pages186-198
Number of pages13
ISBN (Print)9783030272715
DOIs
Publication statusPublished - 2019
Event16th International Conference on Image Analysis and Recognition, ICIAR 2019 - Waterloo, Canada
Duration: 27 Aug 201929 Aug 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11663 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th International Conference on Image Analysis and Recognition, ICIAR 2019
Country/TerritoryCanada
CityWaterloo
Period27/08/1929/08/19

Bibliographical note

Publisher Copyright:
© Springer Nature Switzerland AG 2019.

Keywords

  • Particle filtering
  • Region proposal network
  • Visual object tracking

Fingerprint

Dive into the research topics of 'Target aware visual object tracking'. Together they form a unique fingerprint.

Cite this