TY - JOUR
T1 - Synthesis, characterization, biological activity and voltammetric behavior and determination of cefaclor metal complexes
AU - Tarinc, Derya
AU - Dogan-Topal, Burcu
AU - Dolaz, Mustafa
AU - Golcu, Aysegul
AU - Ozkan, Sibel A.
PY - 2010
Y1 - 2010
N2 - Cefaclor (CEF), a second generation cephalosporin antibiotic, possesses various donor sites for interaction with transition metal (II) ions such as Cu(II), Co(II) and Ni(II) to form complexes of the type [M(CEF)(H2O)Cl], with a molar ratio of metal:ligand (M:L) of 1:1. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their UV-Vis, IR and mass spectra suggest that CEF potentially acts as a bi-dentate ligand. The electrochemical behavior of these synthesized and in solution complexes is studied over glassy carbon electrode in various buffer solutions using cyclic, linear sweep, differential pulse (DP) and square wave (SW) voltammetric techniques. CEF enrichment is observed over Cu(II) complex. The peak current and peak potential of the complex depend on pH, initial potential, and scan rate. DP and SW voltammetric techniques were used for the determination of CEF-Cu(II) complex. For solid synthesis complex, the linear response was within 1×10-6-3×10-6 M with a detection limit on one decimal point: 2.26×10-6 for DPV and 2.30×10-6 M for SWV techniques in acetate buffer at pH 4.70. The repeatability of the methods was within 0.82-0.78% for peak potentials and 1.16-0.71% for peak currents. All necessary validation parameters were investigated as detailed in all media. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Pseudomonas aeruginosa, Kluvyeromyces fragilis, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Bacillus megaterium, Candida albicans, Mycobacterium smegmatis, Bacillus cereus, Enterococcus cloacae and Micrococcus leteus. The copper complex was found to be more potent against two bacterial species than the uncomplexed CEF.
AB - Cefaclor (CEF), a second generation cephalosporin antibiotic, possesses various donor sites for interaction with transition metal (II) ions such as Cu(II), Co(II) and Ni(II) to form complexes of the type [M(CEF)(H2O)Cl], with a molar ratio of metal:ligand (M:L) of 1:1. These complexes were prepared and characterized by physicochemical and spectroscopic methods. Their UV-Vis, IR and mass spectra suggest that CEF potentially acts as a bi-dentate ligand. The electrochemical behavior of these synthesized and in solution complexes is studied over glassy carbon electrode in various buffer solutions using cyclic, linear sweep, differential pulse (DP) and square wave (SW) voltammetric techniques. CEF enrichment is observed over Cu(II) complex. The peak current and peak potential of the complex depend on pH, initial potential, and scan rate. DP and SW voltammetric techniques were used for the determination of CEF-Cu(II) complex. For solid synthesis complex, the linear response was within 1×10-6-3×10-6 M with a detection limit on one decimal point: 2.26×10-6 for DPV and 2.30×10-6 M for SWV techniques in acetate buffer at pH 4.70. The repeatability of the methods was within 0.82-0.78% for peak potentials and 1.16-0.71% for peak currents. All necessary validation parameters were investigated as detailed in all media. The complexes have been screened for antibacterial activity and results were compared with the activity of the uncomplexed antibiotic against Pseudomonas aeruginosa, Kluvyeromyces fragilis, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Bacillus megaterium, Candida albicans, Mycobacterium smegmatis, Bacillus cereus, Enterococcus cloacae and Micrococcus leteus. The copper complex was found to be more potent against two bacterial species than the uncomplexed CEF.
KW - Biological activity
KW - Cefaclor
KW - Copper complex
KW - Electrochemistry
KW - Spectral properties
UR - http://www.scopus.com/inward/record.url?scp=80051641002&partnerID=8YFLogxK
U2 - 10.2174/1573411011006040316
DO - 10.2174/1573411011006040316
M3 - Article
AN - SCOPUS:80051641002
SN - 1573-4110
VL - 6
SP - 316
EP - 328
JO - Current Analytical Chemistry
JF - Current Analytical Chemistry
IS - 4
ER -