Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders

Deniz Çoban Özkan*, Ahmet Türk, Erdal Çelik

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

In this study, LaFeO3 perovskite powders were prepared via the sol–gel method in two different annealing temperatures (500 and 850 °C-according to DTA/TG results) for use in dye-sensitized solar cell applications. The thermal, structural, microstructural, particle size, optical and magnetic properties of the samples were characterized by differential thermal analysis (DTA)/thermogravimetric analysis (TG), Fourier transforms infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), particle size analysis (PSA), UV–Vis spectrometer and vibrating sample magnetometer (VSM). Our XRD findings show that the as-synthesized powders have an excellent crystallinity, and Scherrer’s Equation is used for the estimation of crystallite sizes (within 26–29 nm). Samples were analyzed to reveal the valence states of elements through XPS. Survey scan XPS spectra and high-resolution XPS spectra of La-3d5 and Fe-2p for LaFeO3 samples are given. SEMs employed to observe surface morphologies of all xerogel and ceramic perovskite powder materials and SEM images were verified with PSA results. UV–Vis spectrometer analysis results show that the optical bandgap values (Eg) as measured on both particles were found 2.42 eV. In addition to all analyses, the powders show ferromagnetic behavior, and VSM analyses are used to determine ferromagnetic properties. These results, especially low bandgap, make LaFeO3 powders possible to further increase the performance and efficiency of perovskite-based cells.

Original languageEnglish
Pages (from-to)22789-22809
Number of pages21
JournalJournal of Materials Science: Materials in Electronics
Volume31
Issue number24
DOIs
Publication statusPublished - Dec 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Fingerprint

Dive into the research topics of 'Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders'. Together they form a unique fingerprint.

Cite this