Abstract
The syntheses of polypropylene-graft-poly(l-lactide) copolymers (PP-g-PLAs) via copper (I)-catalyzed azide-alkyne cycloaddition “click” reaction (CuAAC) using azide side-chain functionalized polypropylene (PP-N3) and alkyne end-functionalized poly(l-lactide) (PLA-Alkyne) were reported. The CuAAC was then applied to azide and different feeding ratios of alkyne functional polymers to give PP-g-PLAs that were characterized by FTIR, 1H-NMR, GPC, DSC, and WCA measurements. The CuAAC click reaction was achieved by two different feeding ratio (PP-N3:PLA-Alkyne = 1:5 and 1:10) and thermal, biodegradable, and surface properties of obtained graft copolymers were investigated. The molar ratio of PLA were calculated as 72.7 (PP-g-PLA-1) and 78.4% (PP-g-PLA-2) by 1H-NMR spectroscopy. The water contact angle (WCA) values of PP-g-PLA-1 (81o ± 1.3) and PP-g-PLA-2 (75o ± 1.6) copolymers were compared with commercial chlorinated polypropylene (PP-Cl) (90o ± 1.0), suggesting a more hydrophilic nature of desired graft copolymers produced. Conversely, the enzymatic biodegradation studies revealed that the weight losses of graft copolymers were determined as 13.6 and 22.1%, which is about 4% for commercial PP-Cl sample. Thus, it was clear that this simple and facile method was effective in promoting biodegradation of commercial polypropylene and attractive particularly for worldwide environmental remediation goals.
Original language | English |
---|---|
Pages (from-to) | 2595-2601 |
Number of pages | 7 |
Journal | Journal of Polymer Science, Part A: Polymer Chemistry |
Volume | 56 |
Issue number | 22 |
DOIs | |
Publication status | Published - 15 Nov 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Wiley Periodicals, Inc.
Keywords
- biodegradable
- block copolymers
- poly(propylene) (PP)