Abstract
In the present study, a polymeric micelle based on amphiphilic block copolymer, namely poly(methacrylated methyl lithocholate)-block-poly(oligoethylene glycol methacrylate) (PMML-b-POEGMA) bearing bile acid moiety is prepared via sequential photo-initiated free radical polymerizations, and its drug carrying capacity is investigated using doxorubicin hydrochloride (DOX) as a model drug. For this purpose, two-step procedure is applied in the presence of phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide (BAPO) as bifunctional photo initiator. Based on spectroscopic and chromatographic analyses, the desired amphiphilic block copolymer (PMML-b-POEGMA) is successfully synthesized by wavelength-selective free radical photopolymerization under mild conditions. Finally, the DOX drug is loaded into the PMML-b-POEGMA micelles and then drug release behavior is investigated at two different pH (5.5 and 7.4) values. It is concluded from the results that PMML-b-POEGMA micelles may be used as an efficient nanocarrier to deliver conventional anti-cancer drugs for combination chemotherapy.
Original language | English |
---|---|
Pages (from-to) | 4860-4868 |
Number of pages | 9 |
Journal | Polymers for Advanced Technologies |
Volume | 32 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021 John Wiley & Sons Ltd.
Keywords
- amphiphilic
- drug release
- lithocholic acid
- photopolymerization