TY - GEN
T1 - Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals
AU - Serbes, G.
AU - Aydin, N.
PY - 2011
Y1 - 2011
N2 - Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity.
AB - Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity.
UR - http://www.scopus.com/inward/record.url?scp=84863580074&partnerID=8YFLogxK
U2 - 10.1109/IEMBS.2011.6091193
DO - 10.1109/IEMBS.2011.6091193
M3 - Conference contribution
C2 - 22255416
AN - SCOPUS:84863580074
SN - 9781424441211
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4816
EP - 4819
BT - 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
T2 - 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Y2 - 30 August 2011 through 3 September 2011
ER -