TY - JOUR
T1 - Surface modification of commercial reverse osmosis membranes using both hydrophilic polymer and graphene oxide to improve desalination efficiency
AU - Majid, Haddadi
AU - Heidarzadeh, Nima
AU - Vatanpour, Vahid
AU - Dehqan, Ahmad
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/9
Y1 - 2022/9
N2 - Various methods have been applied to modify the surface of reverse osmosis (RO) membranes to modify the membrane performance to enhance the flux, rejection, and resistance to various factors of fouling. Hence, the main objective of the current study is to modify the surface of commercial RO membranes using the synergistic effect of the hydrophilic polymer and graphene oxide (GO). GO nanosheets were firstly synthesized by the modified hummer method, then characterized by FTIR, XRD, and SEM analyses. Then, the polyacrylic acid (PAA) was grafted on the membrane surface for membrane fabrication. Furthermore, effective factors of grafting such as monomer concentration, time, and temperature of polymerization were optimized. After that, different amounts of GO nanosheets were loaded in PAA optimized layer. Then, the effect of GO loading on the RO membrane structure and performance was investigated. The outcomes of membrane characterization demonstrated that modified RO membranes had a smoother surface, more negative surface charge, a little better hydrophilicity, and more thickness. Moreover, the results of PAA and GO optimization were shown that grafting 1.5 mM of PAA and loading 0.1 wt% of GO nanosheets give the best membrane performance. This membrane (GO [email protected] PAA/RO) between all modified membranes has the most water flux (37.1 L/m2h), the highest NaCl rejection (98%), and the best antifouling efficiency. Ultimately, it was concluded that the grafting of GO@PAA on the surface of a commercial RO membrane is an efficient approach for the enhancement of desalination and antifouling performance of this kind of membrane.
AB - Various methods have been applied to modify the surface of reverse osmosis (RO) membranes to modify the membrane performance to enhance the flux, rejection, and resistance to various factors of fouling. Hence, the main objective of the current study is to modify the surface of commercial RO membranes using the synergistic effect of the hydrophilic polymer and graphene oxide (GO). GO nanosheets were firstly synthesized by the modified hummer method, then characterized by FTIR, XRD, and SEM analyses. Then, the polyacrylic acid (PAA) was grafted on the membrane surface for membrane fabrication. Furthermore, effective factors of grafting such as monomer concentration, time, and temperature of polymerization were optimized. After that, different amounts of GO nanosheets were loaded in PAA optimized layer. Then, the effect of GO loading on the RO membrane structure and performance was investigated. The outcomes of membrane characterization demonstrated that modified RO membranes had a smoother surface, more negative surface charge, a little better hydrophilicity, and more thickness. Moreover, the results of PAA and GO optimization were shown that grafting 1.5 mM of PAA and loading 0.1 wt% of GO nanosheets give the best membrane performance. This membrane (GO [email protected] PAA/RO) between all modified membranes has the most water flux (37.1 L/m2h), the highest NaCl rejection (98%), and the best antifouling efficiency. Ultimately, it was concluded that the grafting of GO@PAA on the surface of a commercial RO membrane is an efficient approach for the enhancement of desalination and antifouling performance of this kind of membrane.
KW - Acrylic acid
KW - Desalination
KW - Graphene oxide
KW - Hydrophilic polymers
KW - Reverse osmosis
UR - http://www.scopus.com/inward/record.url?scp=85130114228&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2022.134931
DO - 10.1016/j.chemosphere.2022.134931
M3 - Article
C2 - 35568212
AN - SCOPUS:85130114228
SN - 0045-6535
VL - 302
JO - Chemosphere
JF - Chemosphere
M1 - 134931
ER -