Sub-nanomolar sensing of ionic mercury with polymeric electrospun nanofibers

Sibel Kacmaz, Kadriye Ertekin*, Aslihan Suslu, Yavuz Ergun, Erdal Celik, Umit Cocen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Ethyl cellulose (EC) based electrospun nanofibers were exploited for sub-nanomolar level optical chemical sensing of ionic mercury. An azomethine ionophore was used as Hg (I) and Hg (II) sensing material. Ethyl cellulose nanofibers with varying amounts of the ionic liquid; 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4) were prepared and characterized. The nanofibers were fabricated by electrospinning technique. The offered chemosensor allow determination of mercury ions in a large linear working range between 1.0 × 10 -10 and 1.0 × 10 -4 mol L -1. Limit of detection was found to be 0.07 nM which makes this technique alternative to cold-vapor atomic absorption spectrometry (CV-AAS), flame emission methods and to inductively coupled plasma-mass spectrometry (ICP-MS). The electrospun nanofibers exhibited excellent sensitivity for Hg (II) with respect to the continuous thin films prepared with same composition. The observed high sensitivity can be attributed to the high surface area of the nanofibrous materials and enhanced diffusibility of the mercury ions to the ionophore.

Original languageEnglish
Pages (from-to)547-552
Number of pages6
JournalMaterials Chemistry and Physics
Volume133
Issue number1
DOIs
Publication statusPublished - 15 Mar 2012
Externally publishedYes

Keywords

  • Luminescence
  • Nanostructures
  • Optical materials
  • Thin films

Fingerprint

Dive into the research topics of 'Sub-nanomolar sensing of ionic mercury with polymeric electrospun nanofibers'. Together they form a unique fingerprint.

Cite this