Abstract
In today’s digital age, the development of technology has made it easier for customers to reach everything. Store segmentation, which is one of the new methods, can be done in order to survive in the competitive environment due to the increase in retail companies. By doing this, they can gain an advantage by developing target marketing strategies specific to each segment instead of a whole marketing strategy. In this study, the data of 101 stores of a retail company were segmented according to 9 variables. These variables include the location of the stores, income levels, invoice numbers, inventory turnover, etc. has. Fuzzy C-means and K-means clustering algorithms were used for this study. Optimal cluster numbers were determined as 8 for Fuzzy C-means in terms of Dunn index and 7 for K-Means in terms of Silhouette index, which measure the effectiveness of clustering study.
Original language | English |
---|---|
Title of host publication | Intelligent and Fuzzy Systems - Digital Acceleration and The New Normal - Proceedings of the INFUS 2022 Conference, Volume 2 |
Editors | Cengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, A. Cagri Tolga, Selcuk Cebi |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 409-416 |
Number of pages | 8 |
ISBN (Print) | 9783031091759 |
DOIs | |
Publication status | Published - 2022 |
Event | International Conference on Intelligent and Fuzzy Systems, INFUS 2022 - Izmir, Turkey Duration: 19 Jul 2022 → 21 Jul 2022 |
Publication series
Name | Lecture Notes in Networks and Systems |
---|---|
Volume | 505 LNNS |
ISSN (Print) | 2367-3370 |
ISSN (Electronic) | 2367-3389 |
Conference
Conference | International Conference on Intelligent and Fuzzy Systems, INFUS 2022 |
---|---|
Country/Territory | Turkey |
City | Izmir |
Period | 19/07/22 → 21/07/22 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Clustering
- Dunn
- Fuzzy C-means
- K-means
- Retailing
- Silhouette
- Store segmentation