Abstract
This paper presents a highly reliable and accurate stock-price prediction model. We aim to anticipate the stock price with respect to multiple patterns in different time scales. The stock price time-series are decomposed, using discrete wavelet transform (DWT), into temporal resolution of varying scales. Then, each subseries is used to predict the stock price using two types of neural network (NN) models with one and two hidden layers. Results show that having multiple time windows in input datasets together with DWT decrease the RMSE of NN models below 10%.
Original language | English |
---|---|
Title of host publication | UBMK 2018 - 3rd International Conference on Computer Science and Engineering |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 518-521 |
Number of pages | 4 |
ISBN (Electronic) | 9781538678930 |
DOIs | |
Publication status | Published - 6 Dec 2018 |
Event | 3rd International Conference on Computer Science and Engineering, UBMK 2018 - Sarajevo, Bosnia and Herzegovina Duration: 20 Sept 2018 → 23 Sept 2018 |
Publication series
Name | UBMK 2018 - 3rd International Conference on Computer Science and Engineering |
---|
Conference
Conference | 3rd International Conference on Computer Science and Engineering, UBMK 2018 |
---|---|
Country/Territory | Bosnia and Herzegovina |
City | Sarajevo |
Period | 20/09/18 → 23/09/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Keywords
- Apple Stock Prices
- Discrete wavelet transform
- financial time series data
- neural networks
- stock price forecasting