Abstract
The stick-free flight stability is an old-fashioned and non-progressive issue; nevertheless, it is still existent and of significant importance to the design of aircraft whose control system is reversible. The existence of the problem necessitates a deep assessment of stick-free flight stability throughout the aircraft design. Up to now, this problem has been addressed using either analytical approaches, which are only related to the static stability evaluation, or performing flight tests. In this study, the problem is handled in its entirety, from static and dynamic flight stability assessment to design criteria with a comprehensive perspective. Moreover, it is also exhibited that, contrary to what has been generally proposed in the literature, the limitation of the problem of stick-free flight stability through static stability assessment is far from being the main challenge. As a brief scope, the derivation of the control surface dynamics, a stick-free trim algorithm, and assessment rationale of the stick-free static and dynamic flight stability using a simulation approach are proposed. As a consequence, the aim is to set a broad understanding for designers related to this phenomenon and add adjunct design criteria in the design optimization process by approaching it from a modeling, simulation, and flight test perspective.
Original language | English |
---|---|
Article number | 234 |
Journal | Aerospace |
Volume | 10 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2023 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Funding
The studied aircraft is the project of Turkish Aerospace Inc., which is still ongoing and will be manufactured very soon. This study is expected to contribute to the aircraft projects of Turkish Aerospace Inc. in the scope of light aircraft certifications. Furthermore, the authors gratefully acknowledge the financial support of Turkish Aerospace Inc.
Funders | Funder number |
---|---|
Türk Havacılık ve Uzay Sanayii |
Keywords
- aircraft design
- aircraft design optimization
- flight dynamics
- modeling and simulation
- stick-free flight stability