SPG4 gene promoter regulation via Elk1 transcription factor

Derya Canbaz, Koray Kärämtay, Esra Karaca, Arzu Karabay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The most common cause of autosomal dominant hereditary spastic paraplegia, that is characterized with axonal degeneration in corticospinal tracts and posterior columns, is known to be caused by mutations in the SPG4 gene which encodes spastin, a microtubule severing ATPase belonging to AAA family. Spastin promotes the formation of microtubule networks that are essential for axon growth and branching which are important for neuronal plasticity. Mutations observed in SPG4 gene of hereditary spastic paraplegia patients have been shown to cause reduced spastin levels. In addition to mutations, transcriptional regulation of spastin gene expression may also affect spastin level. ETS (E Twenty Six-specific)-domain transcription factor, Elk1, has been shown to be important for synaptic plasticity and interact with microtubules. In this study, we aimed to identify the critical promoter regions of SPG4 gene and effects of Elk on SPG4 gene expression. We identified 700 bp TATA-less promoter including a critical CpG island as an optimal promoter, and deletion of the CpG island gradually decreased the SPG4 promoter activity. In addition, we identified the binding sites of Elk1 on the SPG4 promoter by EMSA. Over-expression of Elk1 showed that it repressed the SPG4 promoter and also decreased spastin protein level in SHSY-5Y cells.

Original languageEnglish
Pages (from-to)724-734
Number of pages11
JournalJournal of Neurochemistry
Volume117
Issue number4
DOIs
Publication statusPublished - May 2011

Keywords

  • Elk1
  • spastin
  • SPG4

Fingerprint

Dive into the research topics of 'SPG4 gene promoter regulation via Elk1 transcription factor'. Together they form a unique fingerprint.

Cite this