Spatial interpolation of GNSS troposphere wet delay by a newly designed artificial neural network model

Mahmut Oguz Selbesoglu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Global Navigation Satellite System (GNSS) signals arrive at the Earth in a nonlinear and slightly curved way due to the refraction eect caused by the troposphere. The troposphere delay of the GNSS signal consists of hydrostatic and wet parts. In particular, tropospheric wet delay prediction and interpolation are more dicult than those of the dry component due to the rapid temporal and spatial variation of the water vapor content. Wet delay estimation and interpolation with a sucient accuracy is an important issue for all parameters obtained by GNSS positioning techniques. In particular, in real-time positioning applications, errors caused by interpolation of the wet troposphere delay are reflected in the height component of about 1 to 2 cm. Furthermore, the amount of water vapor in the troposphere is very important information in weather forecast applications obtained as a function of wet delay. Therefore, real-time monitoring of the troposphere can be achieved with a higher resolution and accuracy by utilizing neural network models for interpolation of the wet tropospheric delay. In addition, in the absence of the GNSS station, wet delays can be interpolated by means of the surrounding stations to the desired location. In this study, a back propagation artificial neural network (BPNN) model based on meteorological parameters obtained from The New Austrian Meteorological Measuring Network (TAWES) was used to interpolate wet troposphere delay. Analysis was carried out at 40 reference stations of the Echtzeit Positionierung Austria (EPOSA) GNSS Network covering the whole of Austria. The interpolation of zenith wet delays based on the artificial neural network was performed by using latitude, longitude, altitude and meteorological parameters (temperature, pressure, weighted mean temperature, and water vapor pressure). These parameters were then subtracted from the artificial neural network model one by one and six different artificial neural networks were designed. In addition, the linear interpolation method (LIN) and inverse distance weighted interpolation method (IDW) were used as conventional interpolation methods. In order to investigate the eect of the network density on interpolation methods, three networks, including 40, 30, and 20 reference stations, were formed and the increased distance eect on interpolation methods was evaluated. In addition, analyses were conducted in winter, spring, and summer to evaluate the seasonal eects on interpolation methods. According to the statistical analysis, the root mean square error (RMSE) values of the IDW, LIN, and BPNN methods were found to be 12.6, 13.4, and 5.9 mm, respectively.

Original languageEnglish
Article number4688
JournalApplied Sciences (Switzerland)
Volume9
Issue number21
DOIs
Publication statusPublished - 1 Nov 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 by the author. Licensee MDPI, Basel, Switzerland.

Funding

The author thanks RobertWeber and Johannes B�hm from the Geodesy and Geo Information Department of the Vienna University of Technology for providing the data of the TAWES and EPOSA networks.

FundersFunder number
Geo Information Department of the Vienna University of Technology

    Keywords

    • artificial neural network
    • climate
    • GNSS meteorology
    • interpolation
    • troposphere

    Fingerprint

    Dive into the research topics of 'Spatial interpolation of GNSS troposphere wet delay by a newly designed artificial neural network model'. Together they form a unique fingerprint.

    Cite this