Some Classifications of Biharmonic Lorentzian Hypersurfaces in Minkowski 5-Space

Nurettin Cenk Turgay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

In this paper, we study Lorentzian hypersurfaces in Minkowski 5-space with non-diagonalizable shape operator whose characteristic polynomial is (t − k1)2(t − k3)(t − k4) or (t − k1)3(t − k4). We prove that in these cases, a hypersurface is biharmonic if and only if it is minimal.

Original languageEnglish
Pages (from-to)401-412
Number of pages12
JournalMediterranean Journal of Mathematics
Volume13
Issue number1
DOIs
Publication statusPublished - 1 Feb 2016

Bibliographical note

Publisher Copyright:
© 2014, Springer Basel.

Keywords

  • Biharmonic submanifolds
  • Finite type submanifolds
  • Lorentzian hypersurfaces
  • Minimal submanifolds

Fingerprint

Dive into the research topics of 'Some Classifications of Biharmonic Lorentzian Hypersurfaces in Minkowski 5-Space'. Together they form a unique fingerprint.

Cite this