Abstract
In this paper, we study Lorentzian hypersurfaces in Minkowski 5-space with non-diagonalizable shape operator whose characteristic polynomial is (t − k1)2(t − k3)(t − k4) or (t − k1)3(t − k4). We prove that in these cases, a hypersurface is biharmonic if and only if it is minimal.
Original language | English |
---|---|
Pages (from-to) | 401-412 |
Number of pages | 12 |
Journal | Mediterranean Journal of Mathematics |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Feb 2016 |
Bibliographical note
Publisher Copyright:© 2014, Springer Basel.
Keywords
- Biharmonic submanifolds
- Finite type submanifolds
- Lorentzian hypersurfaces
- Minimal submanifolds