Abstract
We present a formulation of the relative depth estimation from a single image problem, as a ranking problem. By reformulating the problem this way, we were able to utilize literature on the ranking problem, and apply the existing knowledge to achieve better results. To this end, we have introduced a listwise ranking loss borrowed from ranking literature, weighted ListMLE, to the relative depth estimation problem. We have also brought a new metric which considers pixel depth ranking accuracy, on which our method is stronger.
Original language | English |
---|---|
Title of host publication | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728172064 |
DOIs | |
Publication status | Published - 5 Oct 2020 |
Event | 28th Signal Processing and Communications Applications Conference, SIU 2020 - Gaziantep, Turkey Duration: 5 Oct 2020 → 7 Oct 2020 |
Publication series
Name | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
---|
Conference
Conference | 28th Signal Processing and Communications Applications Conference, SIU 2020 |
---|---|
Country/Territory | Turkey |
City | Gaziantep |
Period | 5/10/20 → 7/10/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Funding
The work is supported by the Scientific and Technological Research Council of Turkey (TÜBITAK), project 116E167.
Funders | Funder number |
---|---|
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu | 116E167 |
Keywords
- deep learning
- depth estimation
- learning to rank
- relative depth estimation