Abstract
Magnetic Resonance Fingerprinting is a recent technique which aims at providing simultaneous measurements of multiple parameters. MRF works by varying acquisition parameters in a pseudorandom manner so as to get unique, uncorrelated signal evolutions from each tissue. MRF is a dictionary based approach, and thus requires a database. This database can be created by simulating the signal evolutions from first principles using different physical models for a wide variety of tissue parameter combinations. Having this dictionary, a pattern recognition algorithm is used to match the acquired signal evolutions from each voxel with each signal evolution in the dictionary. In this paper, we compare the efficiency of deep learning based feature extraction method and neural network architectures in order to achieve state-of-the-art accuracy in dictionary matching for MRF. Our results showcase successful dictionary matching with high accuracy both quantitatively and qualitatively.
Translated title of the contribution | Accurate Dictionary Matching for MR Fingerprinting Using Neural Networks and Feature Extraction |
---|---|
Original language | Turkish |
Title of host publication | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728172064 |
DOIs | |
Publication status | Published - 5 Oct 2020 |
Externally published | Yes |
Event | 28th Signal Processing and Communications Applications Conference, SIU 2020 - Gaziantep, Turkey Duration: 5 Oct 2020 → 7 Oct 2020 |
Publication series
Name | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
---|
Conference
Conference | 28th Signal Processing and Communications Applications Conference, SIU 2020 |
---|---|
Country/Territory | Turkey |
City | Gaziantep |
Period | 5/10/20 → 7/10/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.