Shear thinning and thickening in dispersions of spherical nanoparticles

E. Küçüksönmez, J. Servantie

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

We present a molecular dynamics study of the flow of rigid spherical nanoparticles in a simple fluid. We evaluate the viscosity of the dispersion as a function of shear rate and nanoparticle volume fraction. We observe shear-thinning behavior at low volume fractions; as the shear rate increases, the shear forces overcome the Brownian forces, resulting in more frequent and more violent collisions between the nanoparticles. This in turn results in more dissipation. We show that in order to be in the shear-thinning regime the nanoparticles have to order themselves into layers longitudinal to the flow to minimize the collisions. As the nanoparticle volume fraction increases there is less room to form the ordered layers; consequently as the shear rate increases the nanoparticles collide more, which results in turn in shear thickening. Most interestingly, we show that at intermediate volume fractions the system exhibits metastability, with successions of ordered and disordered states along the same trajectory. Our results suggest that for nanoparticles in a simple fluid the hydroclustering phenomenon is not present; instead the order-disorder transition is the leading mechanism for the transition from shear thinning to shear thickening.

Original languageEnglish
Article number012604
JournalPhysical Review E
Volume102
Issue number1
DOIs
Publication statusPublished - Jul 2020

Bibliographical note

Publisher Copyright:
© 2020 American Physical Society.

Funding

This research is financially supported by the Istanbul Technical University Scientific Research Fund (ITU-BAP) under Grant No. 38062.

FundersFunder number
ITU-BAP38062
Istanbul Technical University Scientific Research Fund

    Fingerprint

    Dive into the research topics of 'Shear thinning and thickening in dispersions of spherical nanoparticles'. Together they form a unique fingerprint.

    Cite this