Abstract
In this paper, an approach to isolate the sensor and control surface/actuator failures affecting the innovation of Kalman filter was proposed and applied to an UAV dynamic model. To diagnose if the fault is a sensor fault or an actuator fault, a two-stage Kalman filter (TSKF) insensitive to actuator faults is developed. In the proposed method, sensor faults are isolated by the normalized innovation of Kalman filter. Furthermore, an adaptive linear adaptive TSKF algorithm is used to estimate the loss of control effectiveness and the magnitude of degree of stuck faults in a UAV model. Control effectiveness factors and stuck magnitudes are used to quantify faults entering control systems through actuators. In the simulations, the longitudinal and lateral dynamics of the UAV model is considered, and detection and isolation of sensor and control surface/actuator failures are examined.
Original language | English |
---|---|
Title of host publication | 19th IFAC World Congress IFAC 2014, Proceedings |
Editors | Edward Boje, Xiaohua Xia |
Publisher | IFAC Secretariat |
Pages | 12220-12225 |
Number of pages | 6 |
ISBN (Electronic) | 9783902823625 |
DOIs | |
Publication status | Published - 2014 |
Event | 19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014 - Cape Town, South Africa Duration: 24 Aug 2014 → 29 Aug 2014 |
Publication series
Name | IFAC Proceedings Volumes (IFAC-PapersOnline) |
---|---|
Volume | 19 |
ISSN (Print) | 1474-6670 |
Conference
Conference | 19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014 |
---|---|
Country/Territory | South Africa |
City | Cape Town |
Period | 24/08/14 → 29/08/14 |
Bibliographical note
Publisher Copyright:© IFAC.