Abstract
Development of a sensitive detection method for the reliable screening of widely used organophosphorus (OP) toxins is a crucial request to control their side-effects. Herein, a novel fluorometric assay based on the acetylcholinesterase (AChE) inhibited enzymatic activity and the new peroxidase-like Fe3O4 nanoparticles@ZIF-8 composite (Fe3O4 NPs@ZIF-8) was developed for the determination of OPs. Magnetic Fe3O4 NPs were encapsulated into ZIF-8 and the high mimetic activity of produced composite was assessed on the oxidation of substrates. This observation was applied to the rapid detection of diazinon as a model OP compound. The sensing tool contains AChE and choline oxidase (CHO) enzymes, peroxidase colorimetric or fluorometric substrate, and Fe3O4 NPs@ZIF-8 as the catalyst. In the presence of mimic Fe3O4 NPs@ZIF-8, the generated H2O2 from the enzymatic reactions of acetylcholine is decomposed to hydroxyl radicals. The radicals oxidize the peroxidase substrates to generate a detectable signal. However, due to the inhibition effect of OPs on the enzymatic activity of AChE, lower H2O2 amounts are produced in the presence of diazinon. Using the fluorometric detection system, the generated signal is decreased proportionally by increasing diazinon concentration in the range of 0.5–500 nM. The limit of detection was obtained 0.2 nM. Consequently, the usage of high performance peroxidase-mimic Fe3O4 NPs@ZIF-8 provided a sensitive bio-assay with a potential to be applied as screening tool for toxic OP compounds. The developed assay was successfully applied for the determination of diazinon in water and fruit juices.
Original language | English |
---|---|
Pages (from-to) | 118-125 |
Number of pages | 8 |
Journal | Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy |
Volume | 209 |
DOIs | |
Publication status | Published - 15 Feb 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Elsevier B.V.
Keywords
- Acetylcholinesterase
- Fluorescence
- Magnetic ZIF-8 composite
- Organophosphorus toxins
- Peroxidase mimicking activity