TY - JOUR
T1 - Semianalytical solution of unsteady quasi-one-dimensional cavitating nozzle flows
AU - Delale, Can F.
AU - Pasinlioğlu, Şenay
AU - Başkaya, Zafer
AU - Schnerr, Günter H.
PY - 2014/6
Y1 - 2014/6
N2 - Unsteady quasi-one-dimensional bubbly cavitating nozzle flows are considered by employing a homogeneous bubbly liquid flow model, where the nonlinear dynamics of cavitating bubbles is described by a modified Rayleigh-Plesset equation. The model equations are uncoupled by scale separation leading to two evolution equations, one for the flow speed and the other for the bubble radius. The initial-boundary value problem of the evolution equations is then formulated and a semianalytical solution is constructed. The solution for the mixture pressure, the mixture density, and the void fraction are then explicitly related to the solution of the evolution equations. In particular, a relation independent of flow dimensionality is established between the mixture pressure, the void fraction, and the flow dilation for unsteady bubbly cavitating flows in the model considered. The steady-state compressible and incompressible limits of the solution are also discussed. The solution algorithm is first validated against the numerical solution of Preston et al. [Phys Fluids 14:300-311, 2002] for an essentially quasi-one-dimensional nozzle. Results obtained for a two-dimensional nozzle seem to be in good agreement with the mean pressure measurements at the nozzle wall for attached cavitation sheets despite the observed two-dimensional cavitation structures.
AB - Unsteady quasi-one-dimensional bubbly cavitating nozzle flows are considered by employing a homogeneous bubbly liquid flow model, where the nonlinear dynamics of cavitating bubbles is described by a modified Rayleigh-Plesset equation. The model equations are uncoupled by scale separation leading to two evolution equations, one for the flow speed and the other for the bubble radius. The initial-boundary value problem of the evolution equations is then formulated and a semianalytical solution is constructed. The solution for the mixture pressure, the mixture density, and the void fraction are then explicitly related to the solution of the evolution equations. In particular, a relation independent of flow dimensionality is established between the mixture pressure, the void fraction, and the flow dilation for unsteady bubbly cavitating flows in the model considered. The steady-state compressible and incompressible limits of the solution are also discussed. The solution algorithm is first validated against the numerical solution of Preston et al. [Phys Fluids 14:300-311, 2002] for an essentially quasi-one-dimensional nozzle. Results obtained for a two-dimensional nozzle seem to be in good agreement with the mean pressure measurements at the nozzle wall for attached cavitation sheets despite the observed two-dimensional cavitation structures.
KW - Evolution equations
KW - Nonlinear bubble dynamics
KW - Quasi-one-dimensional nozzle flows
KW - Unsteady cavitating flows
UR - http://www.scopus.com/inward/record.url?scp=84899993270&partnerID=8YFLogxK
U2 - 10.1007/s10665-013-9645-6
DO - 10.1007/s10665-013-9645-6
M3 - Article
AN - SCOPUS:84899993270
SN - 0022-0833
VL - 86
SP - 49
EP - 70
JO - Journal of Engineering Mathematics
JF - Journal of Engineering Mathematics
IS - 1
ER -