Self-supervised training for low-dose Ct reconstruction

Mehmet Ozan Unal, Metin Ertas, Isa Yildirim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)


Ionizing radiation has been the biggest concern in CT imaging. To reduce the dose level without compromising the image quality, low-dose CT reconstruction has been offered with the availability of compressed sensing based reconstruction methods. Recently, data-driven methods got attention with the rise of deep learning, the availability of high computational power, and big datasets. Deep learning based methods have also been used in low-dose CT reconstruction problem in different manners. Usually, the success of these methods depends on labeled data. However, recent studies showed that training can be achieved successfully with noisy datasets. In this study, we defined a training scheme to use low-dose sinograms as their own training targets. We applied the self-supervision principle in the projection domain where the noise is element-wise independent which is a requirement for self-supervised training methods. Using the self-supervised training, the filtering part of the FBP method and the parameters of a denoiser neural network are optimized. We demonstrate that our method outperforms both conventional and compressed sensing based iterative reconstruction methods qualitatively and quantitatively in the reconstruction of analytic CT phantoms and real-world CT images in low-dose CT reconstruction task.

Original languageEnglish
Title of host publication2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI 2021
PublisherIEEE Computer Society
Number of pages4
ISBN (Electronic)9781665412469
Publication statusPublished - 13 Apr 2021
Event18th IEEE International Symposium on Biomedical Imaging, ISBI 2021 - Nice, France
Duration: 13 Apr 202116 Apr 2021

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452


Conference18th IEEE International Symposium on Biomedical Imaging, ISBI 2021

Bibliographical note

Publisher Copyright:
© 2021 IEEE.


  • Deep learning
  • Low-dose computed tomography
  • Reconstruction


Dive into the research topics of 'Self-supervised training for low-dose Ct reconstruction'. Together they form a unique fingerprint.

Cite this