Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s =8 TeV

(CMS Collaboration)

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at s=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb-1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.

Original languageEnglish
Article number021802
JournalPhysical Review Letters
Volume118
Issue number2
DOIs
Publication statusPublished - 12 Jan 2017

Bibliographical note

Publisher Copyright:
© 2017 CERN, for the CMS Collaboration. Published by the American Physical Society under the terms of the «https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Fingerprint

Dive into the research topics of 'Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s =8 TeV'. Together they form a unique fingerprint.

Cite this