Abstract
In this work we develop an AI-aided tactics generator for uncrewed surface vessels (USVs) for protection of critical national infrastructure and maritime assets in face of surface vehicle attacks. Our scientific machine learning (SciML) based methodology incorporates physical principles into the learning process, enhancing the model's ability to generalize and perform accurately in scenarios not encountered during training. This innovation addresses a critical gap in existing AI applications for maritime defense: the ability to operate effectively in novel or changing conditions without the need for retraining.
Original language | English |
---|---|
Title of host publication | DASC 2024 - Digital Avionics Systems Conference, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350349610 |
DOIs | |
Publication status | Published - 2024 |
Externally published | Yes |
Event | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 - San Diego, United States Duration: 29 Sept 2024 → 3 Oct 2024 |
Publication series
Name | AIAA/IEEE Digital Avionics Systems Conference - Proceedings |
---|---|
ISSN (Print) | 2155-7195 |
ISSN (Electronic) | 2155-7209 |
Conference
Conference | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 29/09/24 → 3/10/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- autonomous decision making
- maritime defence
- pursuit evasion
- scientific machine learning