Scalable Planning and Learning Framework Development for Swarm-to-Swarm Engagement Problems

Umut Demir, A. Sadik Satir, Gulay Goktas Sever, Cansu Yikilmaz, N. Kemal Ure

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Development of guidance, navigation and control frameworks/algorithms for swarms attracted significant attention in recent years. That being said, algorithms for planning swarm allocations/trajectories for engaging with enemy swarms is largely an understudied problem. Although small-scale scenarios can be addressed with tools from differential game theory, existing approaches fail to scale for large-scale multi-agent pursuit evasion (PE) scenarios. In this work, we propose a reinforcement learning (RL) based framework to decompose to large-scale swarm engagement problems into a number of independent multi-agent pursuitevasion games. We simulate a variety of multi-agent PE scenarios, where finite time capture is guaranteed under certain conditions. The calculated PE statistics are provided as a reward signal to the high level allocation layer, which uses an RL algorithm to allocate controlled swarm units to eliminate enemy swarm units with maximum efficiency. We verify our approach in large-scale swarm-to-swarm engagement simulations.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2023
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624106996
DOIs
Publication statusPublished - 2023
EventAIAA SciTech Forum and Exposition, 2023 - Orlando, United States
Duration: 23 Jan 202327 Jan 2023

Publication series

NameAIAA SciTech Forum and Exposition, 2023

Conference

ConferenceAIAA SciTech Forum and Exposition, 2023
Country/TerritoryUnited States
CityOrlando
Period23/01/2327/01/23

Bibliographical note

Publisher Copyright:
© 2023, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

Fingerprint

Dive into the research topics of 'Scalable Planning and Learning Framework Development for Swarm-to-Swarm Engagement Problems'. Together they form a unique fingerprint.

Cite this