Rough Pythagorean fuzzy approximations with neighborhood systems and information granulation

Muhammad Akram, Hafiza Saba Nawaz, Cengiz Kahraman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

A rough set approximates a subset of a universal set on the basis of some binary relation and is significant for the reduction of attributes of an information system. On the other hand, a Pythagorean fuzzy set provides information about the extent of truthness and falsity of a statement. Both these theories deal with different forms of uncertainty and can be united to get their combined benefits. This paper contributes a new blend of rough sets and Pythagorean fuzzy sets namely, rough Pythagorean fuzzy sets. This model can encapsulate two distinct types of uncertainties that appear in imprecise available data through the approximation of Pythagorean fuzzy sets in crisp approximation space. We define rough Pythagorean fuzzy sets on the basis of equivalence relation and generalize it for arbitrary binary relations. The manuscript also provides a general framework to study rough Pythagorean fuzzy approximations of different k-step neighborhood systems. The identities and properties of upper and lower rough Pythagorean fuzzy approximation operators are discussed for the neighborhood systems induced from different types of binary relations. Further, we develop algorithms that compute reduct family, core and rough Pythagorean fuzzy approximations of single-valued and set-valued information systems using indiscernibility relation and similarity relation, respectively. These algorithms are subjected to simple yet interesting applications.

Original languageEnglish
Article number119603
JournalExpert Systems with Applications
Volume218
DOIs
Publication statusPublished - 15 May 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

Keywords

  • Indiscernibility relation
  • Information granulation
  • Neighborhood systems
  • Pythagorean fuzzy set
  • Rough set
  • Similarity relation

Fingerprint

Dive into the research topics of 'Rough Pythagorean fuzzy approximations with neighborhood systems and information granulation'. Together they form a unique fingerprint.

Cite this