Abstract
Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging modality widely used for the detailed visualization of retinal microvasculature, which is crucial for diagnosing and monitoring various retinal diseases. However, manual interpretation of OCTA images is labor-intensive and prone to variability, highlighting the need for automated classification methods. This study presents an aproach that utilizes transfer learning to classify OCTA images into different retinal disease categories, including age-related macular degeneration (AMD) and diapethic retinopathy (DR). We used the OCTA-500 dataset [1], the largest publicly available retinal dataset that contains images from 500 subjects with diverse retinal conditions. To address the class imbalance, we employed k-fold cross-validation and grouped various other conditions under the 'OTHERS' class. Additionally, we compared the performance of the ResNet50 model with OCTA inputs to that of the ResNet50 and RetFound (Vision Transformer) models with OCT inputs to assess the efficiency of OCTA in retinal condition classification. In the three-class (AMD, D R, Normal) classification, ResNet50-OCTA o utperformed ResNet50-OCT, but slightly underperformed compared to RetFound-OCT, which was pretrained on a large OCT dataset. In the four-class (AMD, DR, Normal, Others) classification, ResNet50-OCTA and RetFound-OCT achieved similar classification a ccuracies. This study establishes a baseline for retinal condition classification using the OCTA-500 dataset and provides a comparison between OCT and OCTA input modalities.
Original language | English |
---|---|
Title of host publication | UBMK 2024 - Proceedings |
Subtitle of host publication | 9th International Conference on Computer Science and Engineering |
Editors | Esref Adali |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 884-889 |
Number of pages | 6 |
ISBN (Electronic) | 9798350365887 |
DOIs | |
Publication status | Published - 2024 |
Event | 9th International Conference on Computer Science and Engineering, UBMK 2024 - Antalya, Turkey Duration: 26 Oct 2024 → 28 Oct 2024 |
Publication series
Name | UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering |
---|
Conference
Conference | 9th International Conference on Computer Science and Engineering, UBMK 2024 |
---|---|
Country/Territory | Turkey |
City | Antalya |
Period | 26/10/24 → 28/10/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- Class Imbalance
- Deep Learning
- Image Classification
- k-Fold Cross- Validation
- OCTA
- Optical Coherence Tomography Angiography
- ResNet50
- Retinal Diseases