Resilient end-to-end connectivity for software defined unmanned aerial vehicular networks

Gökhan Seçinti, Parisa Borhani Darian, Berk Canberk, Kaushik R. Chowdhury

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

Unmanned Aerial Vehicular (UAV) networks extend wireless access for devices without infrastructure coverage, and also help establish a connectivity backbone during military reconnaissance and disaster events. This paper focuses on the design of a resilient end-to-end connectivity paradigm under unique architectural and scenario assumptions. First, the UAVs themselves are equipped with multiple interfaces that use standardized protocols, with associated variation in data throughout, range, and bit error rates. Second, there may be adversarial agents seeking to disrupt connectivity through targeted jamming in 3D spaces. Third, we assume an overlay software defined control plane, where the UAVs function as software switches, able to execute forwarding commands and determine preferred routes under controller directives. Our proposed approach devises metrics that influence the choice of the wireless interface and weights edges formed between UAV pairs. Further, it also uses a multi-layer graph model and creates maximally separated paths in 3D space to ensure resiliency to jamming. Simulation results conducted for urban scenarios reveal 34% improvement in enhanced resiliency for end-to-end outages by trading off 12% increase in latency over competing approaches.

Original languageEnglish
Title of host publication2017 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
Subtitle of host publicationEngaged Citizens and their New Smart Worlds, PIMRC 2017 - Conference Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-5
Number of pages5
ISBN (Electronic)9781538635315
DOIs
Publication statusPublished - 2 Jul 2017
Event28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017 - Montreal, Canada
Duration: 8 Oct 201713 Oct 2017

Publication series

NameIEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
Volume2017-October

Conference

Conference28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017
Country/TerritoryCanada
CityMontreal
Period8/10/1713/10/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Fingerprint

Dive into the research topics of 'Resilient end-to-end connectivity for software defined unmanned aerial vehicular networks'. Together they form a unique fingerprint.

Cite this