Removal of the copper catalyst from atom transfer radical polymerization mixtures by chemical reduction with zinc powder

Fatma Canturk, Bunyamin Karagoz, Niyazi Bicak*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Simple mixing of an atom transfer radical polymerization (ATRP) mixture with zinc powder was demonstrated to result in rapid decolorizing of the solution and precipitation of elemental copper, using small amounts of silica gel as seeding material. The experiments revealed that the chemical reduction of copper by wetted zinc powder (i.e., 0.325 g/mmol copper) is fast and completed within less than 5 min. UV spectra of the filtered polymer solution showed no any trace of copper. Terminal bromoalkyl groups of the polymers in the ATRP solution were determined to be unchanged by short-term contact with zinc powder at room temperature and a nearly complete reductive dehalogenation takes place only after 24 h of interaction, as evidenced by reaction of elemental zinc with a model compound, ethyl bromoacetate. Indeed, poly(methyl methacrylate) (PMMA) sample (Mn: 7900, polydispersity index: 1.09) isolated from ATRP mixture after the copper removal a by short contact with zinc powder (i.e., 15 min) was determined "still living" as confirmed by chain extension with styrene, ethyl acrylate, and t-butyl acrylate monomers to give block copolymers. The presence of acetic acid was demonstrated to accelerate reductive dehalogenation of PMMA end-groups by zinc and yields nonliving polymer within 2 h.

Original languageEnglish
Pages (from-to)3536-3542
Number of pages7
JournalJournal of Polymer Science, Part A: Polymer Chemistry
Volume49
Issue number16
DOIs
Publication statusPublished - 15 Aug 2011

Keywords

  • atom transfer radical polymerization (ATRP)
  • block copolymer
  • chemical reduction
  • copper catalyst
  • copper removal
  • separation of polymers

Fingerprint

Dive into the research topics of 'Removal of the copper catalyst from atom transfer radical polymerization mixtures by chemical reduction with zinc powder'. Together they form a unique fingerprint.

Cite this