Abstract
Background: Facial surgeries require meticulous planning and outcome assessments, where facial analysis plays a critical role. This study introduces a new approach by utilizing three-dimensional (3D) imaging techniques, which are known for their ability to measure facial areas and volumes accurately. The purpose of this study is to introduce and evaluate a free web-based software application designed to take area and volume measurements on 3D models of patient faces. Methods: This study employed the online facial analysis software to conduct ten measurements on 3D models of subjects, including five measurements of area and five measurements of volume. These measurements were then compared with those obtained from the established 3D modeling software called Blender (version 3.2) using the Bland–Altman plot. To ensure accuracy, the intra-rater and inter-rater reliabilities of the web-based software were evaluated using the Intraclass Correlation Coefficient (ICC) method. Additionally, statistical assumptions such as normality and homoscedasticity were rigorously verified before analysis. Results: This study found that the web-based facial analysis software showed high agreement with the 3D software Blender within 95% confidence limits. Moreover, the online application demonstrated excellent intra-rater and inter-rater reliability in most analyses, as indicated by the ICC test. Conclusion: The findings suggest that the free online 3D software is reliable for facial analysis, particularly in measuring areas and volumes. This indicates its potential utility in enhancing surgical planning and evaluation in facial surgeries. This study underscores the software’s capability to improve surgical outcomes by integrating precise area and volume measurements into facial surgery planning and assessment processes.
Original language | English |
---|---|
Pages (from-to) | 690-708 |
Number of pages | 19 |
Journal | BioMedInformatics |
Volume | 4 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 by the authors.
Keywords
- 3D imaging
- Bland–Altman
- ICC
- aesthetic
- agreement
- area
- craniofacial
- facial analysis
- facial surgery
- homoscedasticity
- intra-class correlation coefficient
- measurements
- normality
- reconstructive
- reliability
- surgery
- volume