TY - JOUR
T1 - Recent advances in boron species removal and recovery using layered double hydroxides
AU - Akdağ, Sultan
AU - Keyikoğlu, Ramazan
AU - Karagunduz, Ahmet
AU - Keskinler, Bulent
AU - Khataee, Alireza
AU - Yoon, Yeojoon
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Anthropogenic boron discharge threatens ecosystem health and water quality. Although boron is a micronutrient necessary for plants, animals, and humans, excessive concentrations can have toxic effects. Layered double hydroxides (LDH) are two-dimensional anionic clay materials that exhibit intrinsic anion-exchange properties. In this paper, the use of LDH for the removal and recovery of boron species from water is presented. The main factors that affect boron removal, including the LDH dosage, initial boron concentration, solution pH, temperature, and the presence of other anions, are outlined. For boron removal, LDH containing Mg, Fe, Zn, or Ca cations have been mostly used owing to their limited toxicities and abundance in the environment. The boron removal capacity of LDH can be improved by transforming the layered structure into bimetallic oxides through calcination, increasing not only the surface area but also the interaction with anionic species during their regeneration. The main boron-removal mechanism of LDH is ion exchange with intercalated anions or the surface complexation with the surface groups of the LDH. A major advantage of using LDH for boron removal is the possibility of recovering and reusing the extracted boron. LDH synthesized with boron as the interlayer anion showed slow-release fertilizer properties, suggesting the use of boron-loaded LDH as plant growth regulators.
AB - Anthropogenic boron discharge threatens ecosystem health and water quality. Although boron is a micronutrient necessary for plants, animals, and humans, excessive concentrations can have toxic effects. Layered double hydroxides (LDH) are two-dimensional anionic clay materials that exhibit intrinsic anion-exchange properties. In this paper, the use of LDH for the removal and recovery of boron species from water is presented. The main factors that affect boron removal, including the LDH dosage, initial boron concentration, solution pH, temperature, and the presence of other anions, are outlined. For boron removal, LDH containing Mg, Fe, Zn, or Ca cations have been mostly used owing to their limited toxicities and abundance in the environment. The boron removal capacity of LDH can be improved by transforming the layered structure into bimetallic oxides through calcination, increasing not only the surface area but also the interaction with anionic species during their regeneration. The main boron-removal mechanism of LDH is ion exchange with intercalated anions or the surface complexation with the surface groups of the LDH. A major advantage of using LDH for boron removal is the possibility of recovering and reusing the extracted boron. LDH synthesized with boron as the interlayer anion showed slow-release fertilizer properties, suggesting the use of boron-loaded LDH as plant growth regulators.
KW - Adsorption
KW - Fertilizer
KW - Hydrotalcite
KW - Nanomaterials
KW - Water remediation
UR - http://www.scopus.com/inward/record.url?scp=85146049431&partnerID=8YFLogxK
U2 - 10.1016/j.clay.2023.106814
DO - 10.1016/j.clay.2023.106814
M3 - Review article
AN - SCOPUS:85146049431
SN - 0169-1317
VL - 233
JO - Applied Clay Science
JF - Applied Clay Science
M1 - 106814
ER -