Quasiconformal harmonic mappings related to Janowski alpha-spirallike functions

Melike Aydoǧan, Yaşar Polatoǧlu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Let f=h(z)+g(z)̄ be a univalent sense-preserving harmonic mapping of the open unit disc D={z||z|<1}. If f satisfies the condition |ω(z)|=|g′(z)h′(z)| < k,0 < k < 1 then f is called k-quasiconformal harmonic mapping in D. In the present paper we will give some properties of the class of k-quasiconformal mappings related to Janowski alpha-spirallike functions.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Mathematical Sciences, ICMS 2013
PublisherAmerican Institute of Physics Inc.
Pages779-784
Number of pages6
ISBN (Print)9780735412361
DOIs
Publication statusPublished - 2014
Externally publishedYes
Event3rd International Conference on Mathematical Sciences, ICMS 2013 - Kuala Lumpur, Malaysia
Duration: 17 Dec 201319 Dec 2013

Publication series

NameAIP Conference Proceedings
Volume1602
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Mathematical Sciences, ICMS 2013
Country/TerritoryMalaysia
CityKuala Lumpur
Period17/12/1319/12/13

Keywords

  • Coefficient inequality
  • Distortion theorem
  • Growth theorem
  • k-quasiconformal mapping

Fingerprint

Dive into the research topics of 'Quasiconformal harmonic mappings related to Janowski alpha-spirallike functions'. Together they form a unique fingerprint.

Cite this