Abstract
The aim of this study was to evaluate the efficiency of immobilized nanosized bio-silica (average crystalline size of 20nm) within chitosan as a nanocomposite adsorbent for removing Acid Red 88 (AR88) in aqueous phase. As result, the amount of adsorbed AR88 (mgg-1) was increased with increasing reaction time and adsorbate concentration and decreasing temperature and initial pH. A rapid increment in the adsorption was happened with increasing adsorbent dosage from 1 to 3gl-1, while further increment in the adsorbent dosage resulted in an insignificant increase in the adsorption (1.66mgg-1). The kinetic study was performed and the results indicated the suitability of pseudo-second order kinetic model (R2=0.994). Besides, the correlation coefficient of Elovich model confirmed chemical nature of the adsorption (R2=0.9756). The fitness of experimental data to the intra-particle diffusion model demonstrated that the adsorption process occurred via a multi-step mechanism. But, the intra-particle diffusion was not the sole rate-limiting stage. According to the Langmuir isotherm model (R2=0.9962), the maximum adsorption capacity of bio-silica/chitosan nanocomposite for sequestering AR88 was about 25.84mgg-1. In addition, negative δG° and δH° values obtained through thermodynamic study indicated that the adsorption of AR88 onto nanocomposite was simultaneous and exothermic in nature, respectively.
Original language | English |
---|---|
Pages (from-to) | 383-391 |
Number of pages | 9 |
Journal | International Biodeterioration and Biodegradation |
Volume | 85 |
DOIs | |
Publication status | Published - Nov 2013 |
Externally published | Yes |
Keywords
- Adsorption
- Bio-silica
- Biopolymer
- Nanocomposite
- Organic dye