Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties

Mahdie Safarpour, Alireza Khataee*, Vahid Vatanpour

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

252 Citations (Scopus)

Abstract

A novel polyvinylidene fluoride (PVDF) mixed matrix ultrafiltration membrane containing reduced graphene oxide/titanium dioxide (rGO/TiO 2) nanocomposite was prepared by phase inversion method. The synthesized rGO/TiO2 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) techniques. The prepared rGO/TiO2 blended PVDF membranes were characterized by atomic force microscopy, SEM, water contact angle, porosity, permeation measurements, and rejection tests. Due to the high hydrophilicity of the rGO/TiO2 nanocomposite, the rGO/TiO2/PVDF membranes were more hydrophilic and had higher pure water flux and flux recovery ratio than the bare PVDF. The blended membranes showed remarkably good properties and performance when the rGO/TiO2 content of 0.05 wt % was added to the casting solution. The pure water flux of the 0.05 wt % rGO/TiO2 blended membrane was increased by 54.9% compared with the bare PVDF membrane. The antifouling study of the membranes revealed that a 0.05 wt % rGO/TiO 2 membrane had the best fouling resistance.

Original languageEnglish
Pages (from-to)13370-13382
Number of pages13
JournalIndustrial and Engineering Chemistry Research
Volume53
Issue number34
DOIs
Publication statusPublished - 27 Aug 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties'. Together they form a unique fingerprint.

Cite this