Predictive Quality Defect Detection Using Machine Learning Algorithms: A Case Study from Automobile Industry

Muhammed Hakan Yorulmuş*, Hür Bersam Bolat, Çağatay Bahadır

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Industry 4.0 is generally defined as a development system that compels the digitalization of processes to create integrated and autonomous systems. The process tracking of parts is very important in terms of detecting missed faulty products. Some defects that escape from quality control directly affect the end-user. Machine learning algorithms have been used to predict changes in the quality control processes and defective products, toward real-time and effective data processing. Thus, the highest quality of the final product will be delivered to the customer and to reduce the defective production coming out of the manufacturing chain. In this article, the study aims to establish a predictive quality model that can detect defect-free approved but faulty products overlooked during the quality inspection operations. Machine learning methods are used to analyze the relationship between quality control data and customer complaints. For this purpose, we use the last quality stage data of an automobile manufacturer’s brake system from 2018 to 2020. Machine learning models are constructed using logistic regression, ridge regression, support vector machine, random forest classification tree, gradient boost, XGBoost, LightGBM, and CatBoost algorithms. The results of specificity and negative prediction value show that the Gradient Boost and CatBoost algorithms have the best classification benefit for detecting the rare events.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation - Proceedings of the INFUS 2021 Conference
EditorsCengiz Kahraman, Selcuk Cebi, Sezi Cevik Onar, Basar Oztaysi, A. Cagri Tolga, Irem Ucal Sari
PublisherSpringer Science and Business Media Deutschland GmbH
Pages263-270
Number of pages8
ISBN (Print)9783030855765
DOIs
Publication statusPublished - 2022
EventInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021 - Istanbul, Turkey
Duration: 24 Aug 202126 Aug 2021

Publication series

NameLecture Notes in Networks and Systems
Volume308
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceInternational Conference on Intelligent and Fuzzy Systems, INFUS 2021
Country/TerritoryTurkey
CityIstanbul
Period24/08/2126/08/21

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Automobile industry
  • Fault detection
  • Industry 4.0
  • Machine learning
  • Predictive quality
  • Quality 4.0
  • Rare event detection

Fingerprint

Dive into the research topics of 'Predictive Quality Defect Detection Using Machine Learning Algorithms: A Case Study from Automobile Industry'. Together they form a unique fingerprint.

Cite this