Abstract
This study suggests application of variable reduction procedures for flyrock prediction. It was aimed to create robust and non-complex predictive models. Eleven operational blast parameters and rock mass properties were measured in an aggregate quarry. Dominant parameters for flyrock occurrence were determined by multivariate statistical methods. Two parallel ANFIS models were developed for flyrock prediction. The first ANFIS model was constructed based on the results of stepwise regression. Burden–hole diameter ratio, in-situ block size and specific charge are the input parameters of ANFIS 1. The second ANFIS model was created based on the results obtained by factor analysis. Burden–hole diameter ratio, bench height–burden ratio, number of holes and charge weight are used as input parameters for ANFIS 2. The calculated mean absolute percentage errors are lower than eight percent for the ANFIS predictions. The median absolute errors are lower than 5 m. The study also investigates alternative accuracy measures to evaluate forecasting performance. Standardized errors, normalized errors and Nash–Sutcliffe Efficiency were found to be useful for model validation. It is concluded that more than a single model can be created for a specific site. Pre-statistical analysis for variable reduction increases performance of the predictive models. Burden appeared to be a significant parameter for flyrock throw.
Original language | English |
---|---|
Article number | 281 |
Journal | Environmental Earth Sciences |
Volume | 81 |
Issue number | 10 |
DOIs | |
Publication status | Published - May 2022 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- Accuracy measures
- Aggregate quarry
- ANFIS
- Burden
- Factor analysis
- Flyrock