Abstract
This paper presents dead-time calculations for the Portable Spectroscopic Fast Neutron Probe (N-Probe) using a combination of the attenuation law, MCNP (Monte Carlo N-particle Code) simulations and the assumption of ideal paralyzing and non-paralyzing dead-time models. The N-Probe contains an NE-213 liquid scintillator detector and a spherical 3He detector. For the fast neutron probe, non-paralyzing dead-time values were higher than paralyzing dead-time values, as expected. Paralyzing dead-time was calculated to be 37.6 μs and non-paralyzing dead-time was calculated to be 43.7 μs for the N-Probe liquid scintillator detector. Dead-time value for Canberra 3He neutron detector (0.5NH1/1K) was also estimated using a combination of subcritical assembly measurements and MCNP simulations. The paralyzing dead-time was estimated to be 14.5 μs, and the non-paralyzing dead-time was estimated to be 16.4 μs for 3He gas filled detector. These results are consistent with the dead-time values reported for helium detectors.
Original language | English |
---|---|
Pages (from-to) | 15-21 |
Number of pages | 7 |
Journal | Progress in Nuclear Energy |
Volume | 92 |
DOIs | |
Publication status | Published - 1 Sept 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd
Keywords
- Attenuation law
- Dead-time calculations
- MCNP simulations