Abstract
The demand on developing new materials for fabricating polymeric membranes is growing progressively in membrane science. Since, novel materials with high chemical, mechanical and thermal resistance are needed to improve membrane separation performance. Low thermal resistance of membrane materials restricts application of polymeric membranes in many industrial separation processes such as membrane distillation or gas separation. Polybenzoxazines (PBzs) could be promising alternatives to fabricate high performance membranes due to outstanding temperature, chemical and physical stability of the resulted membranes. The properties of PBz systems could be easily modified by altering monomers and synthesizing main, side and end chain PBz precursors. In this review, the properties and synthesis methods of PBz is introduced and different types of PBz-based membranes such as ion exchange, electrospun nanofiber, pervaporation, gas separation, solvent resistance and antifouling membranes are reviewed. Most of PBz-based membranes are used in high temperature, harsh, and strong acidic conditions or solvent filtration successfully, approving high performance of these membrane materials. Moreover, the presence of phenolic groups could inherently grant antifouling capacity to these membranes. In addition, the relationship between structure and property of PBZs membranes is surveyed. This review will be beneficial for designing and fabricating membranes from PBz with specific characteristics for applications in harsh conditions.
Original language | English |
---|---|
Article number | 119562 |
Journal | Separation and Purification Technology |
Volume | 278 |
DOIs | |
Publication status | Published - 1 Jan 2022 |
Bibliographical note
Publisher Copyright:© 2021 Elsevier B.V.
Funding
The authors thank the Istanbul Technical University (Turkey), National Research Center on Membrane Technologies (MEM-TEK) and Kharazmi University (Iran) for all the supports provided.
Funders | Funder number |
---|---|
National Research Center on Membrane Technologies | |
Kharazmi University | |
Istanbul Teknik Üniversitesi |
Keywords
- Membrane
- Novel materials
- Polybenzoxazine
- Solvent resistance
- Thermal stability