Abstract
In this study, reinforcement learning algorithms are compared in TORCS simulation environment. In this simulation environment, the goal is to finish the track as soon as possible by controlling the car. The agent decides actions by using highlevel observations from the environment. For this goal, two reinforcement learning algorithms (Deep Deterministic Policy Gradient (DDPG) and Deep Q Network (DQN)) are used and the results are compared and analyzed. Since the action space is continuous, DDPG algorithm performed better as expected. However, we were able to show that DQN algorithm also gives comparable results.
Translated title of the contribution | Comparative Analysis of Reinforcement Learning Algorithms on TORCS Environment |
---|---|
Original language | Turkish |
Title of host publication | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728172064 |
DOIs | |
Publication status | Published - 5 Oct 2020 |
Event | 28th Signal Processing and Communications Applications Conference, SIU 2020 - Gaziantep, Turkey Duration: 5 Oct 2020 → 7 Oct 2020 |
Publication series
Name | 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings |
---|
Conference
Conference | 28th Signal Processing and Communications Applications Conference, SIU 2020 |
---|---|
Country/Territory | Turkey |
City | Gaziantep |
Period | 5/10/20 → 7/10/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.