TY - JOUR
T1 - Paradigm of geological mapping of the adıyaman fault zone of eastern turkey using landsat 8 remotely sensed data coupled with pca, ica, and mnfa techniques
AU - Khalifa, Abdelrahman
AU - Bashir, Bashar
AU - Çakir, Ziyadin
AU - Kaya, Şinasi
AU - Alsalman, Abdullah
AU - Henaish, Ahmed
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6
Y1 - 2021/6
N2 - A principal and independent component analysis (PCA and ICA) and a minimum noise fraction analysis (MNFA) were applied in this study to Landsat 8 Operational Land Imager (OLI) images along the Adıyaman fault zone in Eastern Turkey. These analyses indicated that the lithologic units, fault patterns, and the morphological and structural features can be mapped highly accurately by using spectral-matching techniques in regions where rocks are well exposed. An inspection of all possible band combinations indicated that the PCA 134 and 231 and the ICA 132 band combinations give the best false color composite images for identifying the lithological units and contacts. The findings of the MNFA band combinations show that the MNFA 521 band combination also is robust for discriminating the lithological units, particularly Quaternary clastic units (colluvium/alluvium). MNFA band 1 alone provides the best image for tracing the tectonic and structural elements in the study area. The new up-to-date lithologic map of the Adıyaman fault zone we produced upon the interpretation of the processed OLI images reveals several river channels that are offset and beheaded by the Adıyaman fault, which verifies its Quaternary activity. This study demonstrated that, when used with the OLI data, the PCA, ICA, and MNFA are very powerful for lithological and structural mapping in actively deforming tectonic zones and hence can be applied to other regions elsewhere in the world where the climate is arid to semiarid, and the vegetation cover is scarce.
AB - A principal and independent component analysis (PCA and ICA) and a minimum noise fraction analysis (MNFA) were applied in this study to Landsat 8 Operational Land Imager (OLI) images along the Adıyaman fault zone in Eastern Turkey. These analyses indicated that the lithologic units, fault patterns, and the morphological and structural features can be mapped highly accurately by using spectral-matching techniques in regions where rocks are well exposed. An inspection of all possible band combinations indicated that the PCA 134 and 231 and the ICA 132 band combinations give the best false color composite images for identifying the lithological units and contacts. The findings of the MNFA band combinations show that the MNFA 521 band combination also is robust for discriminating the lithological units, particularly Quaternary clastic units (colluvium/alluvium). MNFA band 1 alone provides the best image for tracing the tectonic and structural elements in the study area. The new up-to-date lithologic map of the Adıyaman fault zone we produced upon the interpretation of the processed OLI images reveals several river channels that are offset and beheaded by the Adıyaman fault, which verifies its Quaternary activity. This study demonstrated that, when used with the OLI data, the PCA, ICA, and MNFA are very powerful for lithological and structural mapping in actively deforming tectonic zones and hence can be applied to other regions elsewhere in the world where the climate is arid to semiarid, and the vegetation cover is scarce.
KW - Adıyaman fault zone
KW - Eastern Turkey
KW - Lithologic and tectonic mapping
KW - Minimum noise fraction analysis
KW - Principal and independent component analysis
UR - http://www.scopus.com/inward/record.url?scp=85107936591&partnerID=8YFLogxK
U2 - 10.3390/ijgi10060368
DO - 10.3390/ijgi10060368
M3 - Article
AN - SCOPUS:85107936591
SN - 2220-9964
VL - 10
JO - ISPRS International Journal of Geo-Information
JF - ISPRS International Journal of Geo-Information
IS - 6
M1 - 368
ER -