TY - JOUR
T1 - Palladium nanoparticles supported on biochar/graphitic carbon nitride as a heterogeneous catalyst for pharmaceutical degradation
AU - Yekan Motlagh, Parisa
AU - Vahid, Behrouz
AU - Babazadeh, Negar
AU - Karimpour, Deniz
AU - Kayan, Berkant
AU - Baran, Talat
AU - Yoon, Yeojoon
AU - Khataee, Alireza
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/8
Y1 - 2024/8
N2 - Sonocatalysis is a promising method for degrading organic pollutants in aqueous media. However, practical applications require the development of low-cost, green, and efficient sonocatalysts. This study investigated the removal of pharmaceutical compounds, such as tetracycline (TC), from water and wastewater via ultrasound (US)-based decomposition by Pd nanoparticles protected on biochar/graphitic carbon nitride (Pd@BC/g-C3N4). The constituents and characteristics of the catalysts were evaluated, and BC/g-C3N4 and Pd@BC/g-C3N4 were found to have bandgaps of 2.61, and 2.21 eV, respectively. Furthermore, the Pd@BC/g-C3N4 nanocomposite was confirmed to consist of Pd nanoparticles uniformly distributed on BC/g-C3N4. Pd@BC/g-C3N4 attained a degradation performance of 94.23 % after 120 min under the optimum conditions ([TC]0 = 10 mg/L, [Pd@BC/g-C3N4] = 0.03 g/L, and pH 6), whereas the degradation efficiency was only 78.33 % with BC/g-C3N4. The sonocatalytic activity did not decrease significantly during reusability experiments, demonstrating the high stability of the Pd@BC/g-C3N4 structure. The hydroxyl radicals (•OH) production during the sonocatalytic degradation of TC via the US/Pd@BC/g-C3N4 process was confirmed using photoluminescence measurements and scavenging experiments with o-phenylenediamine. Gas chromatography-mass spectrometry analysis of the TC degradation intermediates revealed short-chain compounds, suggesting considerable progress toward mineralization during the sonocatalytic process. Thus, Pd@BC/g-C3N4 has the potential as an efficient heterogenous sonocatalyst for wastewater remediation.
AB - Sonocatalysis is a promising method for degrading organic pollutants in aqueous media. However, practical applications require the development of low-cost, green, and efficient sonocatalysts. This study investigated the removal of pharmaceutical compounds, such as tetracycline (TC), from water and wastewater via ultrasound (US)-based decomposition by Pd nanoparticles protected on biochar/graphitic carbon nitride (Pd@BC/g-C3N4). The constituents and characteristics of the catalysts were evaluated, and BC/g-C3N4 and Pd@BC/g-C3N4 were found to have bandgaps of 2.61, and 2.21 eV, respectively. Furthermore, the Pd@BC/g-C3N4 nanocomposite was confirmed to consist of Pd nanoparticles uniformly distributed on BC/g-C3N4. Pd@BC/g-C3N4 attained a degradation performance of 94.23 % after 120 min under the optimum conditions ([TC]0 = 10 mg/L, [Pd@BC/g-C3N4] = 0.03 g/L, and pH 6), whereas the degradation efficiency was only 78.33 % with BC/g-C3N4. The sonocatalytic activity did not decrease significantly during reusability experiments, demonstrating the high stability of the Pd@BC/g-C3N4 structure. The hydroxyl radicals (•OH) production during the sonocatalytic degradation of TC via the US/Pd@BC/g-C3N4 process was confirmed using photoluminescence measurements and scavenging experiments with o-phenylenediamine. Gas chromatography-mass spectrometry analysis of the TC degradation intermediates revealed short-chain compounds, suggesting considerable progress toward mineralization during the sonocatalytic process. Thus, Pd@BC/g-C3N4 has the potential as an efficient heterogenous sonocatalyst for wastewater remediation.
KW - Advanced water treatment
KW - Biochar
KW - Graphitic carbon nitride
KW - Nanocomposite
KW - Sonocatalytic process
KW - Tetracycline
UR - http://www.scopus.com/inward/record.url?scp=85193969999&partnerID=8YFLogxK
U2 - 10.1016/j.jece.2024.113150
DO - 10.1016/j.jece.2024.113150
M3 - Article
AN - SCOPUS:85193969999
SN - 2213-2929
VL - 12
JO - Journal of Environmental Chemical Engineering
JF - Journal of Environmental Chemical Engineering
IS - 4
M1 - 113150
ER -