Otomatik gerilim regülatör sistemi için karşıt tabanlı atom arama optimizasyon algoritması

Translated title of the contribution: An opposition-based atom search optimization algorithm for automatic voltage regulator system

Serdar Ekinci*, Ayşen Demirören, Hatice Lale Zeynelgil, Baran Hekimoğlu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


This article presents a modified version of atom search optimization (ASO) algorithm that uses the opposition-based learning (OBL) to improve the search space exploration. OBL is a commonly used machine learning strategy for increasing the performance of meta-heuristic algorithms. As a new design method, the opposition-based ASO (OBASO) algorithm was proposed for the first time in determining the optimum values of the proportional-integral-derivative plus second order derivative (PIDD2) controller parameters in an automatic voltage regulator (AVR) system. In the design problem, a new objective function, including the integral of time-weighted squared error (ITSE) and overshoot all together, was optimized with the proposed OBASO algorithm to find the best values of the PIDD2 controller parameters. The performance of the proposed OBASO tuned PIDD2 (OBASO-PIDD2) controller is compared to that of the classic ASO tuned PIDD2 (ASO-PIDD2) controller as well as the PID, fractional order PID (FOPID) and PIDD2 controllers tuned with modern meta-heuristic algorithms. Comparative transient and frequency response analyzes were conducted to assess the stability of the proposed approach. In addition, considering the possible changes in AVR parameters, the robustness of the proposed approach was tested. The extensive simulation results and comparisons with other existing controllers show that the proposed OBASO-PIDD2 controller with a new objective function has a superior control performance and can highly improve the system robustness with respect to model uncertainties.

Translated title of the contributionAn opposition-based atom search optimization algorithm for automatic voltage regulator system
Original languageTurkish
Pages (from-to)1141-1157
Number of pages17
JournalJournal of the Faculty of Engineering and Architecture of Gazi University
Issue number3
Publication statusPublished - 2020

Bibliographical note

Publisher Copyright:
© 2020 Gazi Universitesi Muhendislik-Mimarlik. All rights reserved.


Dive into the research topics of 'An opposition-based atom search optimization algorithm for automatic voltage regulator system'. Together they form a unique fingerprint.

Cite this